9786053240655
526016
https://www.turkishbooks.com/books/gauss-ve-kuaterniyon-tam-sayilarindan-kuantum-kod-elde-etme-p526016.html
Gauss ve Kuaterniyon Tam Sayılarından Kuantum Kod Elde Etme
5.46
Bu kitap dört bölümden oluşmaktadır. Birinci bölümde cebir ve kodlama teorisinin temel tanım ve teoremleri, ikinci bölümde kısa bir literatür taraması, kuantum hesaplama ve kuantum bilgi hakkında temel tanım ve teoremler verilmektedir. Yine bu bölümde ikili olan ve ikili olmayan hata düzeltebilen kuantum kodlar açıklanmaktadır.
Üçüncü bölümde Mannheim metriğine göre Gauss tamsayıları üzerindeki klasik kodlar yardımı ile Calderbank-Shor-Steane (kısaca CSS) kodları oluşturulmaktadır. Ayrıca bu bölümde Gauss tam sayıları için iyi hata bazları da tanımlanmaktadır.
Dördüncü bölümde Lipschitz sayıları üzerindeki klasik kodlar yardımı ile CSS kodların nasıl inşa edileceği açıklanmakta ve bu sayılar için iyi hata bazları tanımlanmaktadır.
Üçüncü bölümde Mannheim metriğine göre Gauss tamsayıları üzerindeki klasik kodlar yardımı ile Calderbank-Shor-Steane (kısaca CSS) kodları oluşturulmaktadır. Ayrıca bu bölümde Gauss tam sayıları için iyi hata bazları da tanımlanmaktadır.
Dördüncü bölümde Lipschitz sayıları üzerindeki klasik kodlar yardımı ile CSS kodların nasıl inşa edileceği açıklanmakta ve bu sayılar için iyi hata bazları tanımlanmaktadır.
Bu kitap dört bölümden oluşmaktadır. Birinci bölümde cebir ve kodlama teorisinin temel tanım ve teoremleri, ikinci bölümde kısa bir literatür taraması, kuantum hesaplama ve kuantum bilgi hakkında temel tanım ve teoremler verilmektedir. Yine bu bölümde ikili olan ve ikili olmayan hata düzeltebilen kuantum kodlar açıklanmaktadır.
Üçüncü bölümde Mannheim metriğine göre Gauss tamsayıları üzerindeki klasik kodlar yardımı ile Calderbank-Shor-Steane (kısaca CSS) kodları oluşturulmaktadır. Ayrıca bu bölümde Gauss tam sayıları için iyi hata bazları da tanımlanmaktadır.
Dördüncü bölümde Lipschitz sayıları üzerindeki klasik kodlar yardımı ile CSS kodların nasıl inşa edileceği açıklanmakta ve bu sayılar için iyi hata bazları tanımlanmaktadır.
Üçüncü bölümde Mannheim metriğine göre Gauss tamsayıları üzerindeki klasik kodlar yardımı ile Calderbank-Shor-Steane (kısaca CSS) kodları oluşturulmaktadır. Ayrıca bu bölümde Gauss tam sayıları için iyi hata bazları da tanımlanmaktadır.
Dördüncü bölümde Lipschitz sayıları üzerindeki klasik kodlar yardımı ile CSS kodların nasıl inşa edileceği açıklanmakta ve bu sayılar için iyi hata bazları tanımlanmaktadır.
Yorumlar (0)
Yorum yaz
Bu kitabı henüz kimse eleştirmemiş.